Wood drying

Wood drying (not to be confused with "seasoning") may be described as the art of ensuring that gross dimensional changes through shrinkage are confined to the drying process. Ideally, wood is dried to that equilibrium moisture content as will later (in service) be attained by the wood. Thus, further dimensional change will be kept to a minimum.

It is probably impossible to completely eliminate movement in wood, but this may be approximated by chemical modification. This is the treatment of wood with chemicals to replace the hydroxyl groups with other hydrophobic functional groups of modifying agents (Stamm, 1964). Among all the existing processes, wood modification with acetic anhydride has considerable promise due to the high anti-shrink or anti-swell efficiency (ASE) attainable without damaging the wood properties. However, acetylation of wood has been slow to be commercialised due to the cost, corrosion and the entrapment of the acetic acid in wood. There is extensive literature relating to the chemical modification of wood (Rowell, 1983, 1991; Kumar, 1994; Haque, 1997).

Drying timber is one approach for adding value to sawn products from the primary wood processing industries. According to the Australian Forest and Wood Products Research and Development Corporation (FWPRDC), green sawn hardwood, which is sold at about $350 per cubic metre or less, increases in value to $2,000 per cubic metre or more with drying and processing. However, currently-used conventional drying processes often result in significant quality problems from cracks, both externally and internally, reducing the value of the product. As an example, in Queensland alone (Anon, 1997), assuming that 10% of the dried softwood is devalued by $200 per cubic metre because of drying defects, sawmillers are losing about $5 million per year in that State alone. Australia wide this could be $40 million per year for softwood and an equal or higher amount for hardwood. Thus proper drying under controlled conditions (prior to use) is of great importance in timber utilisation in any country, where climatic conditions vary considerably at different times of the year.

Drying, if carried out promptly after the felling of trees, also protects timber against primary decay, fungal stain and attack by certain kinds of insects. Organisms, which cause decay and stain, generally cannot thrive in timber with a moisture content below 20%. Several, though not all, insect pests can live only in green timber. Dried wood is less susceptible to decay than green wood (above 20% moisture content).

Apart from the above important advantages of drying timber, the following points are also significant (Walker et al., 1993; Desch and Dinwoodie, 1996):

Dried timber is lighter, and hence the transportation and handling costs are reduced.
Dried timber is stronger than green timber in most strength properties.
Timbers for impregnation with preservatives have to be properly dried if proper penetration is to be accomplished, particularly in the case of oil-type preservatives.
In the field of chemical modification of wood and wood products, the material should be dried to a certain moisture content for the appropriate reactions to occur.
Dry wood works, machines, finishes and glues better than green timber. Paints and finishes last longer on dry timber.
The electrical and thermal insulation properties of wood are improved by drying.
Prompt drying of wood immediately after felling therefore results in significant upgrading of, and value adding to, the raw timber. Drying enables substantial long term economy in timber utilisation by rationalising the utilisation of timber resources. The drying of wood is thus an area for research and development, which concerns many researchers and timber companies around the world.

AddThis Social Bookmark Button

No comments: